Chapter 1 : Introduction to Data Science
Topic : What is data and types of data and different data sources
Content : primary data
secondary data
qualitative data
quantitative data
internal data
external data
sensor data
25 MB ,14:28 MIN , THEORY
Chapter 1 : Introduction to Data Science
Topic : Data, information, knowledge, understanding and wisdom
Content : data, information , knowledge and wisdom triangle
28 MB ,14:47 MIN , THEORY
Chapter 1 : Introduction to Data Science
Topic : difference between data and information
Content : distinguish between data and information
13 MB ,7:25 MIN , THEORY
Chapter 1 : Introduction to Data Science
Topic : introduction to high level languages
Content : High Level Languages
25 MB ,14:0 MIN , THEORY
Chapter 1 : Introduction to Data Science
Topic : IDLE
Content : components of idle
17 MB ,9:5 MIN , THEORY
Chapter 2 : Data Management
Topic : primary data collection methods
Content : qualitative data collection methods, quantitative data collection methods
31 MB ,16:14 MIN , THEORY
Chapter 1 : Introduction to Data Science
Topic : distinguish between primary data and secondary data
Content : difference between primary data and secondary data
11 MB ,7:3 MIN , THEORY
Chapter 1 : Introduction to Data Science
Topic : distinguish between primary data and secondary data
Content : difference between primary data and secondary data
11 MB ,7:3 MIN , THEORY
Chapter 2 : Data Management
Topic : secondary data collection methods
Content : data collection methods
11 MB ,6:26 MIN , THEORY
Chapter 1 : Introduction to Data Science
Topic : types of quantitative data
Content : counter, measurement of physical objects, sensory data, projection of data, quantification of qualitative data
14 MB ,8:10 MIN , THEORY
Chapter 2 : Data Management
Topic : data normalization
Content : min max normalization, decimal scaling and standard deviation
25 MB ,14:15 MIN , THEORY
Chapter 1 : Introduction to Data Science
Topic : types of qualitative data
Content : one-one interview, focus groups, process of observation, longitudinal studies, case studies
19 MB ,10:44 MIN , THEORY
Chapter 2 : Data Management
Topic : data analysis
Content : types of data analysis, process of data analysis
20 MB ,11:25 MIN , THEORY
Chapter 2 : Data Management
Topic : data collection methods
Content : primary data, secondary data
10 MB ,5:57 MIN , THEORY
Chapter 2 : Data Management
Topic : structured and unstructured data
Content : distinguish between structured and unstructured data
9 MB ,4:47 MIN , THEORY
Chapter 2 : Data Management
Topic : data analysis and data modelling
Content : Entity relationship model
unified modelling language
17 MB ,9:21 MIN , THEORY
Chapter 1 : Introduction to Data Science
Topic : five v's of data
Content : volume, velocity, variety, value and veracity
9 MB ,5:33 MIN , THEORY
Chapter 2 : Data Management and Processing Systems
Topic : Introduction
Content : Explain Data Management
23 MB ,13:10 MIN , THEORY
Chapter 2 : Data Management
Topic : Data Cleaning/Extraction
Content : Explain data cleaning
23 MB ,11:54 MIN , THEORY
Chapter 1 : Introduction to Data Science
Topic : Exploratory Data Analysis (EDA) + Data Visualization
Content : Explain EDA and data visualization
31 MB ,16:59 MIN , THEORY
Chapter 3 : Data Curation
Topic : Software Development Tools
Content : GitHub
14 MB ,8:29 MIN , THEORY
Chapter 3 : Data Curation
Topic : Security and Ethical Considerations in relation to authenticating and authorizing access to data on remote system
Content : Explain authentication and authorization for storage system
13 MB ,7:56 MIN , THEORY
Chapter 3 : Data Curation
Topic : Structured/Schema based systems as users and acquirers of data
Content : Explain what is structured and unstructured data in detail
17 MB ,9:20 MIN , THEORY
Chapter 3 : Data Curation
Topic : Web Crawling
Content : What is Web Scraping?
18 MB ,10:9 MIN , THEORY
Chapter 3 : Data Curation
Topic : Software Development Tools
Content : Version Control / Source Control
14 MB ,8:28 MIN , THEORY
Chapter 3 : Data Curation
Topic : Amazon Web Services
Content : Explain AWS in brief
24 MB ,14:55 MIN , THEORY
Chapter 3 : Data Curation
Topic : Paradigms of Distributed Database Storage
Content : Explain Paradigms of Distributed Database Storage
24 MB ,13:8 MIN , THEORY
Chapter 3 : Data Curation
Topic : Data Curation Life Cycle
Content : Explain Data Curation Life Cycle in detail
12 MB ,7:40 MIN , THEORY
Chapter 3 : Data Curation
Topic : Query Languages and Operations to Specify and Transform Data
Content : Query Languages
11 MB ,6:46 MIN , THEORY
Chapter 3 : Data Curation
Topic : NoSQl
Content : Write a short note on NoSQL
40 MB ,21:5 MIN , THEORY
Chapter 3 : Data Curation
Topic : Explain what is structured, semi-structured and unstructured data in detail
Content : XML
25 MB ,14:50 MIN , THEORY
Chapter 3 : Data Curation
Topic : Query Languages
Content : Relational Algebra
20 MB ,11:6 MIN , THEORY
Chapter 3 : Data Curation
Topic : Query Languages
Content : Aggregate/Group Functions
12 MB ,6:45 MIN , THEORY
Chapter 3 : Data Curation
Topic : Query Languages
Content : SQL Structured Query Language
21 MB ,11:41 MIN , THEORY
Chapter 3 : Data Curation
Topic : Semi-Structured Systems as Users and Acquirers of Data
Content : JSON
19 MB ,10:26 MIN , THEORY
Chapter 3 : Data Curation
Topic : Web Scraping
Content : What is Web Scraping?
6 MB ,3:54 MIN , THEORY
Chapter 3 : Data Curation
Topic : Lasso Regression
Content : Explain Lasso Regression
22 MB ,12:5 MIN , THEORY
Chapter 3 : Data Curation
Topic : HBase
Content : Write a short note on HBase
16 MB ,8:33 MIN , THEORY
Chapter 3 : Data Curation
Topic : MongoDB
Content : Write a short note on MongoDB
65 MB ,40:19 MIN , THEORY + PRACTICAL
Chapter 5 : Data Transformation
Topic : Smoothing and Aggregating
Content : Smoothing
19 MB ,10:55 MIN , THEORY
Chapter 5 : Data Transformation
Topic : Introduction
Content : Explain the concept of data transformation
22 MB ,12:58 MIN , THEORY
Chapter 4 : Statistical Modelling and Machine learning
Topic : Introduction to Model Selection
Content : Introduction
20 MB ,11:39 MIN , THEORY
Chapter 4 : Statistical Modelling and Machine learning
Topic : Cross Validation
Content : Cross Validation
15 MB ,8:29 MIN , THEORY
Chapter 4 : Statistical Modelling and Machine learning
Topic : Bias/ Variance Trade off E.g. Parsimony
Content : Bias and Variance Trade Off
38 MB ,20:39 MIN , THEORY
Chapter 6 : Supervised Learning
Topic : Regression
Content : Explain Regression in detail with the help of an example
20 MB ,11:6 MIN , THEORY
Chapter 6 : Supervised Learning
Topic : Classification
Content : Explain classification in detail with help of an example
14 MB ,7:12 MIN , THEORY
Chapter 6 : Supervised Learning
Topic : Logistic Regression
Content : Explain Logistic regression with help of an example
12 MB ,6:13 MIN , THEORY
Chapter 7 : Unsupervised Learning
Topic : Introduction
Content : Explain unsupervised learning with help of an example
15 MB ,8:20 MIN , THEORY
Chapter 6 : Supervised Learning
Topic : Time Series Analysis
Content : Explain time series analysis with its components
19 MB ,10:19 MIN , THEORY
Chapter 7 : Unsupervised Learning
Topic : Ensemble Learning
Content : What is need of Ensemble Learning
23 MB ,12:24 MIN , THEORY
Chapter 6 : Supervised Learning
Topic : Forecasting
Content : What do you mean by Forecasting
21 MB ,12:33 MIN , THEORY
Chapter 4 : Statistical Modelling and Machine learning
Topic : AIC
Content : Explain AIC in detail with its mathematical formula
17 MB ,10:13 MIN , THEORY
Chapter 4 : Statistical Modelling and Machine learning
Topic : BIC
Content : Explain BIC in detail with its mathematical formula
19 MB ,11:48 MIN , THEORY
Chapter 4 : Statistical Modelling and Machine learning
Topic : Ridge Regression
Content : Explain Ridge Regression
25 MB ,13:54 MIN , THEORY
Chapter 5 : Data Transformation
Topic : Dimension Reduction
Content : Explain Dimensionality reduction with example
18 MB ,10:22 MIN , THEORY
Chapter 5 : Data Transformation
Topic : Aggregation
Content : What is aggregation in data transformation?
12 MB ,7:59 MIN , THEORY
Chapter 5 : Data Transformation
Topic : Methods for Dimensionality Reduction
Content : Explain various methods for dimensionality reduction
21 MB ,11:8 MIN , THEORY
Chapter 6 : Supervised Learning
Topic : K-Nearest Neighbour (K-NN)
Content : Explain KNN
30 MB ,16:55 MIN , THEORY
Chapter 7 : Unsupervised Learning
Topic : K-Means
Content : Explain K-Means Clustering algorithm with an example
20 MB ,11:17 MIN , THEORY
Chapter 6 : Supervised Learning
Topic : Separating Hyperplane
Content : Explain various ways to find the hyperplane
26 MB ,13:50 MIN , THEORY
Chapter 7 : Unsupervised Learning
Topic : Principal Component Analysis(PCA)
Content : Explain principal component analysis method with the steps required to find PCA
38 MB ,20:49 MIN , THEORY
Chapter 7 : Unsupervised Learning
Topic : Hierarchical Clustering
Content : Explain hierarchical Clustering along with its different approaches
15 MB ,8:12 MIN , THEORY
Chapter 4 : Statistical Modelling and Machine learning
Topic : Regularization
Content : Explain Regularization
19 MB ,10:50 MIN , THEORY